
(Unofficial) Akai Professional
MidiMix Communications
Protocol Guide v0.04
by Julian Ceipek



MIDI Messages from the MidiMix 3
Continuous Controller (CC) Data Message 3
Note On/Off (NT) Messages 4

MIDI Messages to set the MidiMix Button LEDs (sent from host computer to MidiMix) 5

Default Element Identifiers 6

System Exclusive (SysEx) Messages 7
"Universal" MIDI messages 7

Device Inquiry Request/Response 7
General format of Akai-specific SysEx MIDI messages 10
Outbound Configuration Commands (sent from host computer to MidiMix) 11

Introduction (0x60) 11
Configuration Set (0x64) 12
Request Existing Configuration (0x66) 13

Inbound Configuration Commands (sent by MidiMix) 14
Configuration Response (0x67) 14

Configuration Sections (included in configuration set/response messages) 15
<Dial Config> 15
<Slider Config> 16
<MUTE Button Config> 17
<REC ARM Button Config> 18
<MUTE+SOLO Button Config> 18



MIDI Messages from the MidiMix
During standard operation, the MidiMix sends a message every time a button is pressed, slider
is moved, or dial is turned. These standard messages each consist of 3 bytes.

Continuous Controller (CC) Data Message
This message gets sent by the dials/knobs, sliders, and buttons configured to send CC
messages (see Outbound Configuration Commands for how to make buttons behave like CC
elements).

byte # value (hex) value (unsigned decimal) description

1 0xB<Chan> 176+<Chan>

The most significant half of
the byte is a constant 0xB.
The least significant half
indicates the channel. In
MIDI programs, channels
are usually identified as 1 -
16. In the message,
channel 1 is identified as
0x00, or 0, and 16 as 0x0F,
or 15.

2 <CC ID> CC ID (0 - 127 or 0x00 -
0x7F).

3 0x00 - 0x7F 0 - 127 Value of the continuous
element



Note On/Off (NT) Messages
This message gets sent by all buttons by default. They can be configured to send CC messages
instead (see Outbound Configuration Commands for how to do this). Note that the SEND ALL
button does not send any NT or CC messages of its own. Instead, pressing it sends a CC
message for each dial and slider (it does not send CC messages for any buttons, even if they
are configured to behave as CC elements).

byte # value (hex) value (unsigned
decimal) description

1 0x9<Chan> or
0x8<Chan>

144+<Chan> or
128+<Chan>

The most significant half of the
byte indicates whether it is an
on (0x9) or off (0x8) message.
The least significant half
Indicates the channel. In MIDI
programs, channels are usually
identified as 1 - 16. In the
message, channel 1 is
identified as 0x00, or 0, and 16
as 0x0F, or 15.

2 <NT ID> NT ID (0 - 127 or 0x00 - 0x7F).

3 0x7F 127 Always 0x7F.



MIDI Messages to set the MidiMix Button LEDs (sent
from host computer to MidiMix)
Each MUTE and REC ARM button has an LED behind it that can be turned on or off. While the
SOLO button is pressed, the MUTE buttons set their LEDs based on their MUTE+SOLO
identifiers (see the Element Identifiers below). The SEND ALL and SOLO buttons do not have
physical LEDs according to Akai support.

byte # value (hex) value (unsigned decimal) description

1 0x90 144

The LED change state
command is the same as the
Note On message sent by the
MidiMix when a channel 0
button is pressed. Other Akai
products also support using
the 0x80 to turn off an LED,
but the MidiMix does not
appear to understand that.

2 <original NT ID>

The original NT identifier of
the button, even if it has been
configured to send a different
NT or CC ID when pressed.

3 0x00 - 0x7F 0 - 127

Send a non-zero value to turn
on the button's LED or 0x00 to
turn it off (light intensity
appears to be unaffected).
Send a non-zero value to turn
on the button's LED or 0x00 to
turn it off (light intensity
appears to be unaffected).
Some values greater than
0x7F seem to be supported,
but may be misinterpreted as
other MIDI commands
because anything greater than
0x7F has an active most
significant bit, which is
reserved in the MIDI spec.

http://community.akaipro.com/akai_professional/topics/midi-message-to-control-solo-send-all-leds-on-midimix


const midi = require('midi');
let output = new midi.output();
output.openPort(0);
let set_bank_left_on = [0x90, 0x19, 0x7F];
output.sendMessage(set_bank_left_on);

Default Element Identifiers

These are the default element identifiers for the MidiMix. Element/Channel identifiers in blue can
be configured but maintain their default values when sending messages to control their LEDs.
Element/Channel identifiers in red cannot be configured with the messages in this document.
White Element/Channel identifiers can be freely configured but cannot receive messages. The
SOLO row in this diagram represents the SOLO+MUTE button combination. While the SOLO
button is pressed, the MUTE button ids will temporarily change to match the SOLO+MUTE
identifiers.



System Exclusive (SysEx) Messages

"Universal" MIDI messages
These messages should be understood by devices across manufacturers, not just by the
MidiMix.

Device Inquiry Request/Response
Send this message to a specific device or all devices connected to your host computer to
identify the MIDI device(s).

byte # value (hex) value (unsigned decimal) description

1 0xF0 240 SysEx message start

2 0x7E 126 Non-Realtime message
type

3 0x00 - 0x7F 0 - 127

??? Other devices seem to
use this to tell devices with
a specific id to respond,
and use 0x7F to target all
devices. The MidiMix
seems to respond no
matter what.

4 0x06 6 General information
message sub-id

5 0x01 1 Identity request message
sub-id

6 0xF7 247 SysEx message terminator

const midi = require('midi');
let output = new midi.output();
output.openPort(0);
let inquiry_request = [0xF0, 0x7E, 0x7F, 0x06, 0x01, 0xF7];
output.sendMessage(inquiry_request);



The device(s) addressed by the inquiry message will send back a response. The following is the
response the MidiMix will send. Other devices will send different responses (even of different
lengths), but the order of the first 6 bytes should be the same.

byte # value (hex) value (unsigned decimal) description

1 0xF0 240 SysEx message start

2 0x7E 126 Non-Realtime message
type

3 0x00 - 0x7F 0 - 127
Always seems to match
byte #3 of the inquiry
message.

4 0x06 6 General information
message sub-id

5 0x02 2 Identity reply message
sub-id

6 0x47 71 Akai manufacturer's ID

7 0x31 49 MidiMix model ID

8 0x00 0

(<byte 8> * 128 + <byte
9>) represents the number
of bytes in the <data
bytes> section. Here that
is 0*128+25 = 25. The
MIDI standard reserves the
most significant bit in a
byte, so only the lowest 7
bits of each byte can be
used to indicate the
number; treating the bytes
as a short won't work.

9 0x19 25

10 0x00 0
I have no idea what this
data represents, and it
may be different with your
own MidiMix. You might be
able to use this to
distinguish between
multiple MidiMixes
connected to the same
computer. Byte 14 might
be the device id, based on

11 0x00 0

12 0x00 0

13 0x11 17

14 0x00 0

15 0x00 0

https://www.midi.org/specifications/item/manufacturer-id-numbers


the APC40 protocol, but
the other bytes don't seem
to match up well.

16 0x00 0

17 0x00 0

18 0x00 0

19 0x41 65

20 0x00 0

21 0x00 0

22 0x00 0

23 0x00 0

24 0x00 0

25 0x00 0

26 0x00 0

27 0x00 0

28 0x00 0

29 0x00 0

30 0x00 0

31 0x00 0

32 0x00 0

33 0x00 0

34 0x00 0

35 0xF7 247 SysEx message terminator

http://6be54c364949b623a3c0-4409a68c214f3a9eeca8d0265e9266c0.r0.cf2.rackcdn.com/754/documents/APC40_Communications_Protocol_rev_1.pdf


General format of Akai-specific SysEx MIDI messages
Messages of this type are specific to Akai products. The specific messages may vary for
different products.

byte # value (hex) value (unsigned decimal) description

1 0xF0 240 SysEx message start

2 0x47 71 Akai manufacturer's ID

3 <Device ID>
This is usually 0x00 but
may change if you have
multiple devices connected

4 0x31 49 Product model ID

5 <Message ID>

Message type identifier --
for example, 0x66
indicates a configuration
request message

6 <Number of data bytes, MSB>

(MSB * 128 + LSB)
represents the number of
bytes in the <data bytes>
section. The MIDI standard
reserves the most
significant bit in a byte, so
only the lowest 7 bits of
each byte can be used to
indicate the number;
treating the bytes as a
short won't work.

7 <Number of data bytes, LSB>

8...n-1 <data bytes>

Data bytes containing
more information
(depending on the
message type). The
number of bytes in this
section is conveyed by
bytes #6 and #7.

n 0xF7 247 SysEx message terminator

https://www.midi.org/specifications/item/manufacturer-id-numbers


Outbound Configuration Commands (sent from host computer to
MidiMix)

Introduction (0x60)
Send this message to tell the firmware of the MidiMix what the version number of the software
application is so that the firmware could respond differently if the application gets updated
(specifically used in conjunction with Ableton Live). When you open Ableton Live, it sends this
message to the MidiMix with mode 1 (0x41).

byte # value (hex)
value

(unsigned
decimal)

description

1 0xF0 240 SysEx message start

2 0x47 71 Akai manufacturer's ID

3 <Device ID> This is usually 0x00 but may change if
you have multiple devices connected

4 0x31 49 MidiMix model ID

5 0x60 96 Introduction message ID

6 0x00 0 Number of bytes in the data section.
0*128+4 = 4.7 0x04 4

8 0x40 or 0x41 64 or 65

Application/Configuration Mode identifier.
Other Akai Professional products use
0x40 for mode 0 (Generic), 0x41 for
mode 1 (Ableton Live), and 0x41 for
mode 2 (Alternate Ableton Live Mode). I
have yet to see any operational
difference using different modes.

9 <Version High>
Parts of the software version. Ableton
Live 9.7.4 sends 0x09,0x07,0x04.10 <Version Low>

11 <Bugfix Level>

12 0xF7 247 SysEx message terminator

https://www.midi.org/specifications/item/manufacturer-id-numbers


const midi = require('midi');
let output = new midi.output();
output.openPort(0);
let introduction = [0xF0, 0x47, 0x00, 0x31, 0x60, 0x00, 0x04, 0x41, 0x09, 0x07, 0x04,
0xF7];
output.sendMessage(introduction);

Configuration Set (0x64)
Send this message to change the MidiMix configuration. It contains information about how each
button, slider, and dial is currently configured. The MidiMix Editor sends this when you click File
-> Send To Hardware.

byte # value
(hex)

value (unsigned
decimal) description

1 0xF0 240 SysEx message start

2 0x47 71 Akai manufacturer's ID

3 <Device ID> This is usually 0x00 but may change if
you have multiple devices connected

4 0x31 49 MidiMix model ID

5 0x64 100 Configuration set message ID

6 0x01 1
Number of bytes in the data section.
1*128+10 = 138.

7 0x0A 10

DATA

8...55 <Dial Config> A set of two bytes for each of the dial.
See Configuration Sections.

56...73 <Slider Config> A set of two bytes for each of the 9
sliders. See Configuration Sections.

74...97 <MUTE Button Config> A set of three bytes for each MUTE
button. See Configuration Sections.

98...121 <REC ARM Button Config> A set of three bytes for each REC ARM
button. See Configuration Sections.

122...145 <MUTE+SOLO Button
Config>

A set of three bytes for each MUTE
button used while the SOLO button is
pressed. See Configuration Sections.

https://www.midi.org/specifications/item/manufacturer-id-numbers


146 0xF7 247 SysEx message terminator

Request Existing Configuration (0x66)
Send this message to ask the MidiMix to send a configuration response message (0x67) that
contains information about how each button, slider, and dial is currently configured. The MidiMix
Editor sends this when you click File -> Load From Hardware.

byte # value (hex) value (unsigned decimal) description

1 0xF0 240 SysEx message start

2 0x47 71 Akai manufacturer's ID

3 <Device ID>

This is usually 0x00 but
may change if you have
multiple devices
connected

4 0x31 49 MidiMix model ID

5 0x66 102
Request existing
configuration message
ID

6 0x00 0

This should be indicating
how many data bytes
there are, but there are
0, so maybe it indicates
something else? The
MidiMix seems to
respond the same way if
a different value is
supplied here...

7 0x01 1

8 0xF7 247 SysEx message
terminator

const midi = require('midi');
let output = new midi.output();
output.openPort(0);
let request_configuration = [0xF0, 0x47, 0x00, 0x31, 0x66, 0x00, 0x01, 0xF7];
output.sendMessage(request_configuration);

https://www.midi.org/specifications/item/manufacturer-id-numbers


Inbound Configuration Commands (sent by MidiMix)

Configuration Response (0x67)
The MidiMix sends this in reply to a "request existing configuration message" (0x66). It contains
information about how each button, slider, and dial is currently configured and is identical to the
configuration set message (0x64) with the exception of the message ID. The MidiMix Editor
save files (with the extension .midimix) use this format as well. This makes loading from a file
the same as loading from a device.

byte # value
(hex)

value
(unsigned
decimal)

description

1 0xF0 240 SysEx message start

2 0x47 71 Akai manufacturer's ID

3 <Device ID> This is usually 0x00 but may change if you have
multiple devices connected

4 0x31 49 MidiMix model ID

5 0x67 103 Configuration response message ID

6 0x01 1
Number of bytes in the data section. 1*128+10 = 138.

7 0x0A 10

DATA

8...55 <Dial Config> A set of two bytes for each of the dial. See
Configuration Sections.

56...73 <Slider Config> A set of two bytes for each of the 9 sliders. See
Configuration Sections.

74...97 <MUTE Button
Config>

A set of three bytes for each MUTE button. See
Configuration Sections.

98...121 <REC ARM Button
Config>

A set of three bytes for each REC ARM button. See
Configuration Sections.

122...145 <MUTE+SOLO
Button Config>

A set of three bytes for each MUTE button used while
the SOLO button is pressed. See Configuration
Sections.

https://www.midi.org/specifications/item/manufacturer-id-numbers


146 0xF7 247 SysEx message terminator

Configuration Sections (included in configuration set/response
messages)

<Dial Config>
The 24 MidiMix dials/knobs each have an associated continuous controller (CC) identifier
ranging from 0 to 127 inclusive, and a channel ranging from 1 to 16 inclusive. The configuration
response (0x67) and configuration set (0x64) messages include a dial configuration section to
get/set these values.

Dial in
<column, row> byte # value (hex) value (unsigned decimal) description

<1,1>
8 0x00 - 0x0F 0 - 15

Channel, 0 indexed --
channel 1 is
represented as 0 in
the message, and 16
is represented as 15.

9 0x00 - 0x7F 0 - 127 CC identifier

<1,2>
10 0x00 - 0x0F 0 - 15 Channel

11 0x00 - 0x7F 0 - 127 CC identifier

<1,3>
12 0x00 - 0x0F 0 - 15 Channel

13 0x00 - 0x7F 0 - 127 CC identifier

<2,1>
14 0x00 - 0x0F 0 - 15 Channel

15 0x00 - 0x7F 0 - 127 CC identifier

<2,2>...<8,2> 16...53 ... ... ...

<1,8>
54 0x00 - 0x0F 0 - 15 Channel

55 0x00 - 0x7F 0 - 127 CC identifier



<Slider Config>
Like the dials, the 9 MidiMix sliders each have an associated continuous controller (CC)
identifier ranging from 0 to 127 inclusive, and a channel ranging from 1 to 16 inclusive. The
configuration response (0x67) and configuration set (0x64) messages include a slider
configuration section to get/set these values.

Slider in
column byte # value (hex) value (unsigned decimal) description

1
56 0x00 - 0x0F 0 - 15

Channel, 0 indexed --
channel 1 is
represented as 0 in
the message, and 16
is represented as 15.

57 0x00 - 0x7F 0 - 127 CC identifier

2 58...69 ... ... ...

8
70 0x00 - 0x0F 0 - 15 Channel

71 0x00 - 0x7F 0 - 127 CC identifier

master
72 0x00 - 0x0F 0 - 15 Channel

73 0x00 - 0x7F 0 - 127 CC identifier



<MUTE Button Config>
The 8 MidiMix MUTE buttons each have an associated Note (NT) or continuous controller (CC)
identifier ranging from 0 to 127 inclusive, and a channel ranging from 1 to 16 inclusive. They
also have a mode (0x00 or 0x01) that configures them to behave like buttons or continuous
controllers. In the latter case, they will act like sliders when reporting data (but they aren't
pressure sensitive, so they'll report fully on or fully off). The configuration response (0x67) and
configuration set (0x64) messages include a MUTE button configuration section to get/set these
values.

Button in
column byte # value (hex) value (unsigned decimal) description

1

74 0x00 - 0x0F 0 - 15

Channel, 0 indexed --
channel 1 is
represented as 0 in
the message, and 16
is represented as 15.

75 0x00 or 0x01 0 or 1

Button mode -- 0x00
means behave like a
note; 0x01 means
behave like a CC

76 0x00 - 0x7F 0 - 127 CC/NT identifier

2 77...94 ... ... ...

8

95 0x00 - 0x0F 0 - 15 Channel

96 0x00 or 0x01 0 or 1 Button mode

97 0x00 - 0x7F 0 - 127 CC/NT identifier



<REC ARM Button Config>
The 8 MidiMix REC ARM buttons can be configured just like the MUTE buttons.

Button in
column byte # value (hex) value (unsigned

decimal) description

1

98 0x00 - 0x0F 0 - 15 Channel

99 0x00 or 0x01 0 or 1 Button mode

100 0x00 - 0x7F 0 - 127 CC/NT identifier

2 101...118 ... ... ...

8

119 0x00 - 0x0F 0 - 15 Channel

120 0x00 or 0x01 0 or 1 Button mode

121 0x00 - 0x7F 0 - 127 CC/NT identifier

<MUTE+SOLO Button Config>
The 8 MidiMix MUTE buttons behave like a new row of buttons while the SOLO button is
pressed. These virtual buttons can be configured just like the REC ARM and MUTE buttons.

Button in
column byte # value (hex) value (unsigned

decimal) description

1

122 0x00 - 0x0F 0 - 15 Channel

123 0x00 or 0x01 0 or 1 Button mode

124 0x00 - 0x7F 0 - 127 CC/NT identifier

2 125...142 ... ... ...

8

143 0x00 - 0x0F 0 - 15 Channel

144 0x00 or 0x01 0 or 1 Button mode

145 0x00 - 0x7F 0 - 127 CC/NT identifier


